Effect of ethanol on microbial community structure and function during natural attenuation of benzene, toluene, and o-xylene in a sulfate-reducing aquifer.

نویسندگان

  • Kevin Feris
  • Doug Mackay
  • Nick de Sieyes
  • Irina Chakraborty
  • Murray Einarson
  • Krassimira Hristova
  • Kate Scow
چکیده

Ethanol (EtOH) is a commonly used fuel oxygenate in reformulated gasoline and is an alternative fuel and fuel supplement. Effects of EtOH release on aquifer microbial ecology and geochemistry have not been well characterized in situ. We performed a controlled field release of petroleum constituents (benzene (B), toluene (T), o-xylene (o-X) at approximately 1-3 mg/L each) with and without EtOH (approximately 500 mg/L). Mixed linear modeling (MLM) assessed effects on the microbial ecology of a naturally sulfidic aquifer and how the microbial community affected B, T, and o-X plume lengths and aquifer geochemistry. Changes in microbial community structure were determined by quantitative polymerase chain reaction (qPCR) targeting Bacteria, Archaea, and sulfate reducing bacteria (SRB); SRB were enumerated using a novel qPCR method targeting the adenosine-5'-phosphosulfate reductase gene. Bacterial and SRB densities increased with and without EtOH-amendment (1-8 orders of magnitude). Significant increases in Archaeal species richness; Archaeal cell densities (3-6 orders of magnitude); B, T, and o-X plume lengths; depletion of sulfate; and induction of methanogenic conditions were only observed with EtOH-amendment MLM supported the conclusion that EtOH-amendment altered microbial community structure and function, which in turn lowered the aquifer redox state and led to a reduction in bioattenuation rates of B, T, and o-X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations.

In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport mode...

متن کامل

Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns.

Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years...

متن کامل

The effect of respiratory exposure to benzene, toluene, xylene and ethyl benzene on the spirometric indices among the petroleum products loading workers

Abstract Background and Aim: Benzene, toluene, xylene and ethyl benzene (BTEX) are the most important aromatic compounds in petroleum products. BTEX compounds due to their high vapor pressure, easily change to gas form and mixed with ambient air. Petroleum products loading workers are exposed to these compounds by the inhalation of BTEX compounds. The aim of this study was to evaluate the ef...

متن کامل

Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions.

Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental condi...

متن کامل

Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.

A microbial consortium derived from a gasoline-contaminated aquifer was enriched on toluene (T) in a chemostat at 20 degrees C and was found to degrade benzene (B), ethylbenzene (E), and xylenes (X). Studies conducted to determine the optimal temperature for microbial activity revealed that cell growth and toluene degradation were maximized at 35 degrees C. A consortium enriched at 35 degrees C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 7  شماره 

صفحات  -

تاریخ انتشار 2008